Bayesian Optimal Data Detector for Hybrid mmWave MIMO-OFDM Systems with Low-Resolution ADCs
نویسندگان
چکیده
Hybrid analog-digital precoding architectures and low-resolution analog-to-digital converter (ADC) receivers are two solutions to reduce hardware cost and power consumption for millimeter wave (mmWave) multiple-input multiple-output (MIMO) communication systems with large antenna arrays. In this study, we consider a mmWave MIMO-OFDM receiver with a generalized hybrid architecture in which a small number of radio-frequency (RF) chains and low-resolution ADCs are employed simultaneously. Owing to the strong nonlinearity introduced by low-resolution ADCs, the task of data detection is challenging, particularly achieving a Bayesian optimal data detector. This study aims to fill this gap. By using generalized expectation consistent signal recovery technique, we propose a computationally efficient data detection algorithm that provides a minimum mean-square error estimate on data symbols and is extended to a mixed-ADC architecture. Considering particular structure of MIMO-OFDM channel matirx, we provide a lowcomplexity realization in which only FFT operation and matrixvector multiplications are required. Furthermore, we present an analytical framework to study the theoretical performance of the detector in the large-system limit, which can precisely evaluate the performance expressions such as mean-square error and symbol error rate. Based on this optimal detector, the potential of adding a few low-resolution RF chains and high-resolution ADCs for mixed-ADC architecture is investigated. Simulation results confirm the accuracy of our theoretical analysis and can be used for system design rapidly. The results reveal that adding a few low-resolution RF chains to original unquantized systems can obtain significant gains.
منابع مشابه
On Low-Resolution ADCs in Practical 5G Millimeter-Wave Massive MIMO Systems
Nowadays, millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) systems is a favorable candidate for the fifth generation (5G) cellular systems. However, a key challenge is the high power consumption imposed by its numerous radio frequency (RF) chains, which may be mitigated by opting for low-resolution analog-to-digital converters (ADCs), whilst tolerating a moderate performan...
متن کاملRobust massive MIMO Equilization for mmWave systems with low resolution ADCs
Leveraging the available millimeter wave spectrum will be important for 5G. In this work, we investigate the performance of digital beamforming with low resolution ADCs based on link level simulations including channel estimation, MIMO equalization and channel decoding. We consider the recently agreed 3GPP NR type 1 OFDM reference signals. The comparison shows sequential DCD outperforms MMSE-ba...
متن کاملHybrid Precoder and Combiner Design with Low Resolution Phase Shifters in mmWave MIMO Systems
Millimeter wave (mmWave) communications have been considered as a key technology for next generation cellular systems and Wi-Fi networks because of its advances in providing orders-of-magnitude wider bandwidth than current wireless networks. Economical and energy-efficient analog/digial hybrid precoding and combining transceivers have been often proposed for mmWave massive multiple-input multip...
متن کاملWideband Channel Estimation for Hybrid Beamforming Millimeter Wave Communication Systems with Low-Resolution ADCs
A potential tremendous spectrum resource makes millimeter wave (mmWave) communications a promising technology. High power consumption due to a large number of antennas and analog-to-digital converters (ADCs) for beamforming to overcome the large propagation losses is problematic in practice. As a hybrid beamforming architecture and low-resolution ADCs are considered to reduce power consumption,...
متن کاملIterative Hybrid Precoder and Combiner Design for mmWave MIMO-OFDM Systems
This paper investigates the problem of hybrid precoder and combiner design for multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems operating in millimeter-wave (mmWave) bands. We propose a novel iterative scheme to design the codebook-based analog precoder and combiner in forward and reverse channels. During each iteration, we apply compressive sensin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018